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Abstract

The accuracy of the numerical representation of atmospheric wave motion as a function of the vertical discretiza-
tion was analyzed in a recent study. The schemes which provided the most accuracy were not well suited for satisfying
conservation properties. In this comment, the analysis is extended to include alternative forms of the vertical momen-
tum equation that use the Exner function, instead of pressure, in the pressure gradient term. It is found that these
forms lead to more accurate representations of the normal mode frequencies for the schemes having good conservation
properties.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In a recently published article [1], Thuburn and Woollings present a detailed analysis of the effect of the
vertical discretization on the numerical representation of wave motion in the atmosphere. Among the schemes
they analyzed, the ones that had the most accurate linear normal mode frequencies were not suited for pres-
ervation of discrete analogs of conservation properties. For example, the most straightforward way to achieve
mass conservation is to predict density using the flux-form of the mass continuity equation, yet some of their
optimal schemes did not involve such a direct prediction of mass. Here we augment their analysis by starting
from a continuous form of the vertical momentum equation that involves the vertical derivative of the Exner
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function instead of pressure.1 This improves the accuracy of the normal mode frequencies for the discretiza-
tions that may best preserve discrete analogs of conservation properties.

Thuburn and Woollings (hereafter TW) begin their article by discussing the continuous dry, non-hydro-
static, compressible Eulerian equations, in which, besides the three components of velocity, a minimum of
two thermodynamic variables must be predicted. They present the possible pairs of prognostic thermodynamic
variables and their corresponding prognostic equations within the framework of three different vertical
coordinate systems: geometric height, isentropic and a terrain-following mass-based coordinate. Then they
derive the analytical normal modes for wave motion in an atmosphere with an isothermal, hydrostatic basic
state.

In the continuous system, the wave behavior is (of course) independent of the vertical coordinate and the set
of prognostic variables. However, in the vertically discrete system, the normal modes depend on the vertical
coordinate, the choice of prognostic thermodynamic variables, and the way these are staggered on the vertical
grid. In their article TW analyze the discrete normal modes for all three vertical coordinate systems and an
extensive set of prognostic thermodynamic variable pairs and staggerings. They categorize each configuration
based on the accuracy of the represented wave frequency as well as on the existence of computational and/or
unstable modes. Their results can serve as a guideline for choosing the prognostic variable set and the vertical
grid on which to place them.

In the rating system used by TW, which is based on agreement with the analytical wave frequency, the
top-rated configuration for each of the three vertical coordinate systems is not optimally suited for preserv-
ing discrete analogs of conservation properties. For example, none of these optimal configurations for the
height and isentropic coordinates include mass as a predicted variable, and the ones for the isentropic
and mass-based coordinates do not have height as a predicted variable. Therefore, satisfying the discrete
analogs of mass and geopotential energy conservation in a fully non-linear model with these configurations
may not be straightforward (see [3,4] for example). TW point out this issue in their paper and they do not
discourage using configurations that have good conservation properties but have less accurate wave fre-
quency representation.

Is there a way to make the configurations with good conservation properties have optimal normal mode
frequency representation as well? We performed a numerical eigenmode analysis of these configurations using
a form of the vertical pressure-gradient term that uses the Exner function instead of pressure. As mentioned
above, this results in a more accurate representation of the normal mode frequencies. In the following we con-
trast the vertical momentum equations we used with those used by TW for each of the three vertical coordi-
nate systems and present our results. The configurations we focus on are only those that include mass,
geopotential and potential temperature as the prognostic thermodynamic variables, as these have the best con-
servation properties in terms of mass, geopotential and thermodynamic energy.
2. Discussion

2.1. Height coordinate

The height-coordinate configuration with good conservation properties has mass predicted at the levels
containing the horizontal velocity. It is denoted by TW with the notation (wh,uvq) which lists the prognostic
variable set. The variables preceding the comma are at layer edges, while those following the comma are at
layer centers as shown in Fig. 1. Here w is the vertical velocity, h the potential temperature, u and v are the
horizontal velocity components, and q is density.

The form of the continuous non-linear vertical momentum equation that TW consider is
1 We
the firs
([2]).
Dw
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pz � g: ð1Þ
note here that immediately prior to submission of this article, we learned through personal correspondence with Dr. John Thuburn,
t author of [1], that he had independently performed an analysis similar to ours. His work has recently been accepted for publication



Fig. 1. Staggering of the prognostic variables on the vertical z-coordinate grid.
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The corresponding linearized form is
Fig. 2
indicat
wt ¼ �
1

qðrÞ
ðpz þ gqÞ: ð2Þ
We use the same notation as TW, where subscripts z and t indicate partial derivatives, the superscript (r) rep-
resents the isothermal, hydrostatic, resting basic state and the variables represent perturbation quantities. Also
p is pressure, g is gravity and D/Dt is the material time derivative. The vertically discrete form of Eq. (2) is
ðwtÞlþ1=2 ¼ �
1

qðrÞlþ1=2

ðdpÞlþ1=2

ðdzÞlþ1=2

þ g
1

2
ðqlþ1 þ qlÞ

" #
; ð3Þ
where the subscript l is the integer layer-center index. Variables with half-integer indices are located at layer
edges. The vertical difference of the variable A is defined as
ðdAÞlþ1=2 � Alþ1 � Al: ð4Þ
Note that the buoyancy term involves density averaged to layer centers.
The alternate form of the non-linear vertical momentum equation that we used is
Dw
Dt
¼ �hPz � g; ð5Þ
where P is the Exner function defined by P � cp
p
p0

� �j
. The resulting linearized equation is
wt ¼ �hðrÞPz þ
g

hðrÞ
h: ð6Þ
The vertically discrete form of (6) is
ðwtÞlþ1=2 ¼ �hðrÞlþ1=2

ðdPÞlþ1=2

ðdzÞlþ1=2

þ g

hðrÞlþ1=2

hlþ1=2: ð7Þ
. Representative dispersion relation (frequency in s�1) for Category 1 ‘‘optimal’’ configurations reproduced from [1]. Crosses
e numerical eigenmode frequencies and diamonds indicate analytical frequencies.



Fig. 3. Representative dispersion relation (frequency in s�1) for Category 2a ‘‘slow Rossby mode’’ configurations reproduced from [1].

Table 1
Reclassification of selected mass- and/or height-predicting configurations resulting from modification of the vertical momentum equation

Height coordinate Isentropic coordinate Terrain-following mass-based coordinate

Category 1 (optimal category) (wh,uvq)P (whz,uv)P

Category 2a (slow Rossby modes) (wh,uvq) (wz,uvr)P (whz,uv)
Category 2b (fast Rossby modes) (wz,uvr)p

These configurations have the superscript ‘P’ to denote use of the ‘‘Exner function form’’ of the vertical momentum equation. The other
configurations are as in [1].
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Now there is no averaging of prognostic variables involved because the buoyancy term is written in terms of h,
which is located at the same level as w. There are no other changes to the system of equations except for the
addition of a diagnostic relation between the Exner function and pressure. Since this relation does not involve
averaging, because P and p are at the same level, we have effectively reduced the number of averages in the
system by one. The resulting discrete normal mode frequencies are closer to the analytical wave frequencies
and match those of the ‘‘optimal’’ category of TW. We believe the improved accuracy is due to the fact that
fewer variables are averaged. This supports TW’s argument to that effect.

The eigenmode problem analyzed is the solution of the normal modes of an atmosphere with an isothermal,
hydrostatic basic state at rest. The vertical domain has depth D (=10 km) and is bounded on top and bottom
by rigid, constant-height surfaces. The equations are continuous in time and in the horizontal dimension and
the horizontal domain is periodic. Waves with a horizontal wavelength of 1000 km are considered. Fig. 2,
reproduced from TW’s paper, is a representative dispersion relation for the schemes they classify as Category
1 configurations. These have distinctly more accurate normal mode frequencies than other configurations. The
discrete normal mode frequencies we obtained by using Eq. (7) match this figure. The frequency of the west-
ward propagating acoustic (highest frequency), gravity, and Rossby (lowest frequency) waves are shown as a
function of vertical wave mode n which is related to the vertical wave number m by the relation m = np/D. The
numerical frequencies are indicated by the crosses, and the analytical frequencies by the diamonds. Each ver-
tical wave mode has n � 1 internal nodes. There are 20 levels, therefore the highest mode that can be repre-
sented is n = 19, which has a wavelength slightly longer than 2(dz). The 4(dz) mode is given by n = 10. The two
n = 0 modes are the external acoustic (Lamb wave) and Rossby modes. There is generally good agreement
between the numerical and analytical frequencies. The error is larger for modes with higher wave numbers.

In contrast to the ‘‘Category 1’’ results we obtained using the ‘‘Exner function form’’ of the vertical momen-
tum equation, TW obtained the dispersion relation shown in Fig. 3 with their (wh,uvq) configuration through
the use of Eq. (3). This figure is representative of schemes that TW placed in Category 2a, in which no



Fig. 4. Staggering of the prognostic variables on the vertical h-coordinate grid.
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zero-frequency computational modes exist but there is a substantial underestimate of the Rossby mode fre-
quencies at the higher vertical wave numbers. So we were able to upgrade the category with good conservation
properties by using the alternate form of the vertical momentum equation. This reclassification is shown in
Table 1, which summarizes the results of using the ‘‘Exner function form’’ of the vertical momentum equation
with the configurations best suited for satisfying conservation properties, i.e., the mass and/or height-predict-
ing configurations. The schemes we analyzed have the subscript ‘‘P’’.

2.2. Isentropic coordinate

For the case of isentropic coordinates, we analyzed the (wz,uvr)p configuration whose vertical grid stagger-
ing is shown in Fig. 4.

The form of the continuous non-linear vertical momentum equation in h-coordinates that Thuburn and
Woollings consider for the mass and height predicting configurations is
Fig. 5
Dw
Dt
¼ � 1

r
ph � g; ð8Þ
where r is the pseudo-density defined by r � q oz
oh and z is the geopotential height on h-coordinate surfaces.

The resulting linearized form is
wt ¼ �
1

rðrÞ
ðph þ grÞ; ð9Þ
where the variables represent perturbation quantities. The vertically discrete form of (9) is
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. Representative dispersion relation (frequency in s�1) for Category 2b ‘‘fast Rossby mode’’ configurations reproduced from [1].



M.D. Toy, D.A. Randall / Journal of Computational Physics 223 (2007) 82–88 87
This equation involves averaging the pseudo-density to layer edges in the buoyancy term. The diagnostic equa-
tion for density q is given by
rl

rðrÞl

¼ ql

qðrÞl

þ 1

zðrÞlh

ðdzÞl
ðdhÞl

: ð11Þ
The result that TW obtain for this configuration is shown in Fig. 5. This dispersion relation is representative
of Category 2b schemes in which the frequency of the Rossby modes for high vertical wave numbers is sub-
stantially overestimated.

The alternate form of the continuous non-linear vertical momentum equation that we consider is

Dw
Dt
¼ � q

r
hPh � g: ð12Þ
In our eigenmode analysis we linearize the discrete form of Eq. (12). This gives a different result from discret-
izing the equation in its linear form, and we believe it provides a more accurate representation of the linearized
characteristics of an actual non-linear model. The resulting linearized discrete equation is
ðwtÞlþ1=2 ¼ �hlþ1=2

ðdPÞlþ1=2

ðdzðrÞÞlþ1=2

� g
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ðdzðrÞÞlþ1

þ ðdzÞl
ðdzðrÞÞl

� �
: ð13Þ
Note that there is still one averaged quantity, i.e., the average of the difference (dz)l/(dz(r))l, which is equivalent
to the ‘‘coarse’’ difference of z across 2(dz(r))l.

The dispersion relation we obtained using this ‘‘Exner function form’’ of the vertical momentum equation is
the same as that for the Category 2a schemes shown in Fig. 3. So the effect of using this equation in the eigen-
mode analysis is to alter the accuracy of the wave frequency from a high bias to a low bias (see Table 1). For
this case the effect is neutral, i.e., there is not a definite improvement in accuracy.

2.3. Terrain-following mass-based coordinate

The vertical staggering of the (whz,uv) configuration in the terrain-following mass-based coordinate system
is shown in Fig. 6.

The non-linear form of the vertical momentum equation that TW linearize is
Dw
Dt
¼ � 1

r
op
og
� g; ð14Þ
where g is the mass-based coordinate defined at the geometric height z as the ratio of the mass of air per unit
area above that level to the total mass of air per unit area in the entire column. This is expressed as
g �
R zT

z qdzR zT

zS
qdz

; ð15Þ
where zT and zS are the model top and surface height, respectively. The pseudo-density, defined as r � q oz
og, is

the total mass per unit area of the atmospheric column above a given point on the surface, i.e.,
r ¼
Z zT

zS

qdz: ð16Þ
When linearized, Eq. (14) becomes
wt ¼ �
1

rðrÞ
ðpg þ grÞ: ð17Þ
Fig. 6. Staggering of the prognostic variables on the vertical g-coordinate grid.
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The vertically discrete form is then
ðwtÞlþ1=2 ¼ �
1

rðrÞ
ðdpÞlþ1=2
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" #
: ð18Þ
Note that the pseudo-density r is independent of height and therefore does not carry a level index. This form
of the vertical momentum equation involves no averaged variables.

The ‘‘Exner function form’’ of the non-linear vertical momentum equation is
Dw
Dt
¼ � q

r
h
oP
og
� g: ð19Þ
We linearize the discrete form of (19), which gives
ðwtÞlþ1=2 ¼ �hðrÞlþ1=2
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Comparing Eqs. (18) and (20), we see that we have introduced an averaged quantity. According to the argu-
ment about the relationship between accuracy and the number of averaged variables in the system we should
expect the normal mode frequencies to be less accurate. Instead the accuracy improves and this configuration
moves to the ‘‘optimal’’ category as shown in Table 1. The reason for this is not clear.

3. Conclusion

We have demonstrated that it is possible to optimally represent normal mode frequencies with vertical dis-
cretizations that are best suited for preserving conservation properties. This is achieved by using the Exner
function instead of pressure in the vertical pressure-gradient term of the vertical momentum equation. We
analyzed the effect of this modification in the three vertical coordinates that TW considered. In height coor-
dinates, the improved accuracy of the normal modes appears to be due to the reduction in the number of aver-
aged variables in the system of equations. For the mass-based coordinates, however, the accuracy improves
despite the introduction of an additional averaged quantity. For the isentropic coordinate, the ‘‘optimal’’ cat-
egory is not achieved, although it can be argued that there is improvement in moving from Category 2b to 2a.
Figs. 3 and 5 show that the error in the Rossby mode frequency mainly occurs in the higher vertical modes – in
the case of the ‘‘slow Rossby mode’’ category (Category 2a) the error becomes large for n greater than about
10 (4(dz) and shorter waves), and for the ‘‘fast Rossby mode’’ category (Category 2b) waves with n greater
than about 5 (8(dz) and shorter) are affected. Waves whose wavelengths are shorter than 4(dz) are generally
not well represented in models so the error in the frequencies for such waves is probably not important. Since
the ‘‘slow Rossby mode’’ category more accurately represents frequencies of waves in the 4(dz) and larger
wavelengths than the ‘‘fast Rossby mode’’ category, it is the better category. In fact it is almost as accurate
as the ‘‘optimal’’ category for this range of wavelengths.
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